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Introduction
Gene expression analysis and transcriptome profiling have been 
extensively explored in lung cancer1–5; however, there has not 
been much research on gene expression profiling for targeted 
therapy and immunotherapy. The current standard approach to 
targeted therapy is via companion DNA tests,6 while the immu-
notherapy option involves routine tests, such as pathological im-
munoassay for the protein expression of PD1 or PD-L1 or by 
DNA-based Next Generation Sequencing (NGS) assessment of 

the tumor mutation burden, mismatch repair, and microsatellite 
instability. Transcriptome profiling has emerged as a promis-
ing biomarker for cancer treatment and has shown encouraging 
clinical results.7 In non-small cell lung cancer (NSCLC), a study 
showed that gene expression profiling might have better prog-
nostic prediction power than considering the mutation status.8 In 
this in-silico study, we present a framework with a novel analysis 
procedure to introduce the gene cluster expression index (GCEI) 
and demonstrate its power to stratify lung cancer patients with 
dramatically different prognostic risks.

Materials and methods

Preparation and preprocessing of the data sets

Training data set
Two lung cancer microarray data sets: GSE30219, originating 
from Rousseaux et al.,9 and GSE31210, originating from Okay-
ama et al.,10 were downloaded from the Lung Cancer Explorer 
(LCE) web portal with standardized clinical data according to Cai 
et al.11 There were 482 patients with non-empty recurrence labels, 
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among whom 168 cases (35%) were labeled as recurred within two 
years since diagnosis. The two data sets were further normalized 
by aligning the median of all the samples to 0 and then by aligning 
the median of all the genes to 0 independently. There were about 
17,000 common genes in the selected data sets here and those used 
in the training data listed below. All samples with missing recur-
rence or missing expression value of a common gene were omit-
ted. A combined data set was obtained by slicing and aligning the 
common genes and common clinical variables from the two nor-
malized sets and then by stacking them together. There were 310 
patients with Stage I cancers, 111 with Stage II, 53 with Stage III 
or IV, and 8 with unknown stages. The average patient age was 61 
years old, with the youngest being 15 years old and the eldest 84 
years old. There were 330 males and 152 females.

Testing data set
Other data sets, namely GSE37745, GSE41271, GSE50081, and 
GSE74777 with recurrence annotations, were also downloaded 
from the same LCE web portal as above and also normalized with 
the medians of the samples and genes aligned to 0, respectively. In 
addition, the expression of each gene in each data set was further 
normalized according to the distribution of the training set for the 
sake of applying thresholds from the training set directly to the 
testing set. The goal was to align the first and the third quartiles 
between the testing and the training data sets by linear mapping. 
Here, for a given gene, we let Q1, Q2 be the first and the third 
quartiles of its expression vector in the training data, and T1, T2 
be the first and the third quartiles of its expression vector in the 
testing data. The normalized value N (x) was then obtained from 
the original value x via the formula: N (x) = (x − T1)/(T2 − T 1) × 
(Q2 − Q1) + Q1. Finally, all 4 normalized data sets were stacked 
together. Note that T1 and T2 were calculated only using a subset 
with the same proportion of recurred samples as that of the train-
ing set. This normalization step was solely for directly applying 
the modelling recurrence threshold derived with the training set to 
the testing set.

Pre-selected gene clusters
To start the analysis, we chose 11 genes: ALK, BRAF, EGFR, MET, 
NTRK, RAS, RET, ROS1, TP53, PDCD1, and CTLA4. These were 
chosen because the first eight genes have been intensively studied 
and demonstrated to be drivers for lung cancers and their mutation 
status was used to guide targeted therapy and the last two were for 
immunotherapy. However, it should be noted that the procedure 
we report is very general and can be applied to any other genes and 
clusters. For a given gene, the literature and online information 
were used to select the cluster members. For example, the ALK 
cluster consisted of fusion partners cataloged in Ou et. al.12 and 
some other genes from the String database and the gene card de-
scription, with 107 genes finally pre-selected for the ALK cluster. 
Table 1 lists the cluster members. Each cluster was analyzed inde-
pendently using the same method. Note that the cluster members 
can be changed in the future when more insights about an impor-
tant gene seed are added.

Gene cluster expression index (GCEI)
The goal was to assign samples with a binary index for a given 
gene cluster, called the gene cluster expression index (GCEI). This 
process comprises two steps: (1) Determination of the expression 
index of each member gene, such that a GCEI of 1 represents a 
higher recurrence risk stratified by the expression, or 0 otherwise; 
(2) Determination of the percentage of genes with a GCEI of 1 

for each patient and labeling the patient as abnormal with a GCEI 
of 1 if there are too many abnormal members in the cluster. Both 
steps involve univariate prediction modeling via receiver operating 
characteristic (ROC) curve analysis.

Univariate modeling with the ROC curve and setting the cutoff 
value
The ROC curve is a basic technique in medical diagnostic test 
evaluation.13 It is used for univariate modeling. Given a training 
set with a binary index vector, say recurrence, and a predicting 
vector, say expression vector of a gene, we can sort the training 
samples by the predictor values in increasing order, then by as-
suming a cutoff value that goes from the minimal to the maximal 
value with a fixed step size, each sample can be labeled as a binary 
prediction based on the cutoff. The prediction and the index (truth) 
give rise to a confusion matrix, such that a false positive rate (FPR) 
and true positive rate (TPR) are computed. The ROC curve is then 
plotted on a unit box with the FPR as the x-axis and TPR as the y-
axis, as shown in Figure 1. The perfect prediction is at the top-left 
corner as (FPR, TPR) = (0, 1); and therefore, along the curve from 
left to right, we can find the point closest to the corner (0, 1). This 
point is the optimal decision point leveraging both the specificity 
(1-FPR) and sensitivity (TPR) and the corresponding cutoff is thus 
set. The area of the bottom region is called the area under the curve 
(AUC), with values ranging from 0.5 to 1 (note: for a predictor 
with an AUC in between 0 and 0.5, a reversal with the 0-predictor 
flips the AUC to be above 0.5).

Determination of single gene expression abnormality concern-
ing recurrence
For a given cluster, as listed in Table 1, for each member gene, we 
used its expression to predict recurrence and draw an ROC to ob-
tain its optimal cutoff, which we then used to determine a sample 
expression status: normal or abnormal. Here, given a member gene 
g, we let Tg be the chosen cutoff, then the training samples were 
divided into two populations: one greater than or equal to Tg, the 
other less than. Now for each population, a recurrence percentage 
was computed, denoted as Pabove, Pbelow, respectively.

We let Pδ = |Pabove − Pbelow|, which represents the prediction 
power of gene g by using its expression to stratify patients. In ad-
dition, if Pabove > Pbelow, then g is considered over-expressed and 
showing a higher recurrence risk, or else it is under-expressed. 
Next, we set a significance level Tdiff = 5% (note that this value 
was only for demonstration purposes, it can be set as another value 
based on a particular application), and the gene g was considered 
significant if Pδ ≥ Tdiff. With respect to g, samples were labeled as: 
(1) normal if Pδ < Tdiff; (2) up if Pδ ≥ Tdiff and Pabove > Pbelow; (3) 
down if Pδ ≥ Tdiff and Pabove < Pbelow. Both up and down are consid-
ered abnormal. In this way, all the member genes were labeled as 
0 (normal) or 1 (abnormal, either up or down).

Cluster member voting and the GCEI
Next, we calculated the percentage of abnormal gene members 
for each sample to form a new feature vector. We plotted the 
ROC using the abnormal percentage to predict recurrence and 
denoted the chosen cutoff as Tp. We labeled the sample as 1 if 
the abnormal percentage is greater than or equal to Tp, or as 0 
otherwise. This characteristic index is called the gene cluster 
expression index (GCEI). A GCEI of 1 represents an abnormal 
expression for the cluster, while a GCEI of 0 represents a normal 
expression. GCEI thus represents the abnormality of a gene clus-
ter within which the percentage of abnormal member genes with 
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GCEI = 1 is beyond Tp.

Combined GCEI (cGCEI)
A combined GCEI was defined first by concatenating a single clus-
ter GCEI into binary string and second by counting the number of 
1’s in the string. This thus represents a summary of the expres-
sion abnormality of selected gene clusters. Here, for the targeted 
therapy genes, we fixed the ordered list of genes (ALK, BRAF, 
EGFR, MET, NTRK, RAS, RET, ROS1, TP53), and concatenated 
the corresponding GCEI of each cluster to obtain a binary string 
of 9 bits; for example, 000000000 represents that all 9 gene clus-
ters were normally expressed, 100000000 represents that only the 
first ALK cluster was abnormally expressed and the rest 8 were 
normal, 111111111 represents that all 9 clusters were abnormally 
expressed, and so on. The 9-bit GCEI classified lung cancers into 
29 = 512 subtypes. For the immunotherapy gene couple (CTLA4, 
PDCD1), GCEI was a two-digit string with four combinations: 00, 
01, 10, 11, representing that none, CTLA4 only, PDCD1 only, or 
both CTLA4 and PDCD1 clusters were abnormally expressed, re-
spectively.

In practice, for the 9-bit GCEI string, since it would be difficult 

to accumulate enough patient cases for most of the 512 subtypes, 
we collapsed the 512 subtypes into only 10 super-subtypes by 
counting the number of digits that were 1 in the string, whereby 
patients were grouped into 10 subtypes with aggregated GCEIs 
of 0, 1, 2, 3, …, 9, respectively, denoted as cGCEI, with each cG-
CEI value representing how many gene clusters were abnormal 
among the nine clusters. To simplify it further, after analyzing the 
recurrence risk profiles of the 10 subtypes, we found that they 
could be further divided into two groups, denoted by the binary 
variable DGCntGT5, where the group of DGCntGT5 = 1 included 
all subtypes with cGCEI from 6 to 9, namely, all samples with at 
least 6 abnormal clusters; and DGCntGT5 = 0, which included all 
subtypes with cGCEI from 0 to 5, i.e. all samples with at most 5 
abnormal clusters.

Recurrence and survival concerning GCEI status
Recurrence and survival were assessed with respect to the sub-
groups stratified by a single GCEI, a combinatory cGCEI, or by 
DGCntGT5. Given a binary index, this classified the samples into 
two subgroups with an index of 1 or 0, respectively. Recurrence/
Survival risk was defined as the percentage of recurred/dead pa-

Table 1.  Pre-selected gene clusters for important lung cancer genes

SEED GENE

ALK ADAM17, AKAP8L, ALK, ALKAL2, ATAD2B, ATIC, ATP13A4, BCL11A, BIRC6, C12ORF75, C9ORF3, CAMKMT, CBL, CDK15, CEBPZ, 
CEP55, CLIP1, CLIP4, CLTC, CMTR1, CRIM1, CUX1, CYBRD1, DCHS1, DCTN1, DYSF, EIF2AK3, EML4, EML6, EPAS1, ERC1, FBN1, 
FBXO11, FBXO36, FRS2, FUT8, GCC2, HIP1, IRS1, ITGAV, KIF5B, KLC1, LCLAT1, LIMD1, LMO7, LPIN1, LYPD1, MAPK1, MAPK3, 
MDK, MPRIP, MSN, MTA3, MYT1L, NCOA1, NPM1, NYAP2, PHACTR1, PICALM, PLEKHA7, PLEKHH2, PLEKHM2, PPFIBP1, 
PPM1B, PRKAR1A, PRKCB, PTN, RANBP2, RBM20, SEC31A, SHC1, SLC16A7, SLMAP, SMPD1, SMPD2, SMPD3, SMPDL3A, 
SMPDL3B, SOCS5, SORCS1, SOS1, SPECC1, SPTBN1, SQSTM1, SRBD1, SRD5A2, STRN, SWAP70, TACR1, TANC1, TCF12, TFG, 
THADA, TNIP2, TOGARAM2, TPM4, TPR, TRIM66, TSPYL6, TTC27, TUBB, VIT, VKORC1L1, WDPCP, WDR37, WNK3, YAP1

BRAF BRAF, MAP2K1, MAP2K2, MAP2K3, MAP2K4, MAP2K5, MAP2K6, MAP2K7, MAP3K1, MAP3K10, MAP3K11, MAP3K12, 
MAP3K13, MAP3K14, MAP3K14.AS1, MAP3K19, MAP3K2, MAP3K20, MAP3K21, MAP3K3, MAP3K4, MAP3K5, MAP3K6,  
MAP3K7, MAP3K7CL, MAP3K8, MAP3K9, MAP4K1, MAP4K2, MAP4K3, MAP4K4, MAP4K5, RAF1

EGFR AREG, BRAF, BTC, CTNNB1, EGF, EGFR, EREG, MUC1, NRG1, NRG2, NRG3, NRG4, NRGN, RGS16, SRC, TGFA

MET GAB1, GRB2, HGF, MET, PIK3R1, PLCG1, SRC, STAT3

NTRK AFAP1, AGBL1, AGBL2, AGBL3, AGBL5, ARHGEF2, BCAN, BCR, BTBD1, CD74, CHTOP, CTRC, DAB2IP, EML4, ETV6, GRIPAP1, 
HNRNPA2B1, IGFBP7, IRF2BP2, LMNA, LRRC71, LYN, MPRIP, MRPL24, MYO5A, NACC2, NFASC, NTRK1, NTRK2, NTRK3, PAN3, 
PDE4DIP, PLEKHA6, PPL, QKI, RABGAP1L, RBPMS, RFWD2, SCYL3, SLITRK1, SLITRK2, SLITRK3, SLITRK4, SLITRK5, SLITRK6,  
SQSTM1, STRN, TFG, TLE4, TP53, TPM3, TPM4, TPR, TRAF2, TRIM24, TRIM63, UBE2R2, VCL

RAS FRAS1, GRASP, HRAS, HRASLS, HRASLS2, HRASLS5, KRAS, MRAS, NRAS, RASA1, RASA2, RASA3, RASAL1, RASAL2, RASAL3, 
RASD1, RASD2, RASEF, RASGEF1A, RASGEF1B, RASGEF1C, RASGRF1, RASGRF2, RASGRP1, RASGRP2, RASGRP3, RASGRP4, 
RASIP1, RASL10A, RASL10B, RASL11A, RASL11B, RASL12, RASSF1, RASSF10, RASSF2, RASSF3, RASSF4, RASSF5, RASSF6,  
RASSF7, RASSF8, RASSF9, RRAS, RRAS2

RET ADD3, ALOX5, ANK3, ANKS1B, ARHGAP12, CCDC186, CCDC3, CCDC6, CCDC88C, CCNY, CCNYL1, CDC123, CLIP1, CTNNA3, 
CUX1, DOCK1, DUSP5, DYDC1, EML4, EML6, EPC1, EPHA5, ERC1, FRMD4A, GDNF, GFRA1, GFRA2, GFRA3, GFRA4, 
GPRC5B, IL2RA, KIAA1217, KIAA1468, KIF13A, KIF5B, LSM14A, MINDY3, MPRIP, MRPS30, MYO5C, NCOA4, NRP1, PARD3, 
PCM1, PICALM, PRKAR1A, PRKCQ, PRKG1, PRPF18, PTER, PTK2, PTPRK, RASSF4, RBPMS, RET, RETN, RETNLB, RETREG1, 
RETREG2, RETREG3, RETSAT, RUFY2, SIRT1, SORBS1, TBC1D32, TRIM24, TRIM33, TSSK4, UBE2D1, WAC, ZNF43, ZNF438

ROS1 AKT1, CCDC6, CD74, CEP72, CLTC, EZR, GOPC, IRS1, KDELR2, KMT2C, LIMA1, LRIG3, MAPK1, MAPK3, MSN, MYO5C, PLCG2, 
PROS1, PTPN11, RBPMS, ROS1, SDC4, SLC34A2, SLC6A17, SLMAP, STAT3, TFG, TMEM106B, TPD52L1, TPM3, VAV3, WNK1,  
ZCCHC8

TP53 TP53, TP53BP1, TP53BP2, TP53I11, TP53I13, TP53I3, TP53INP1, TP53INP2, TP53RK, TP53TG1, TP53TG5

CTLA4 CD274, CD276, CD28, CD80, CD86, CTLA4, FOXP3, GRB2, LCK, NFAM1, NFAT5, NFATC1, NFATC2, NFATC2IP, NFATC3, NFATC4,  
PTPN11

PDCD1 CD247, CD274, CD3D, CD3E, CD4, CD80, FGL1, HLA.DQB1, HLA.DRB1, LAG3, PDCD1, PDCD1LG2, PRKCQ, PTPN11, ZAP70
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tients within each subgroup.

Data analysis and software
The data analysis and plots were mostly performed using by R 
scripts in RStudio 2022.07.1 with R version 4.0.5 on the Mac plat-
form with OS version darwin17.0. The ROC analysis was based 
on prediction and performance in the R package ROCR, where 
performance is a perfect function to obtain almost all the evalu-
ation results of a prediction model, such as FPR, TPR, and AUC. 
Quartiles were calculated with the R function quantile.

Results

Univariate models of the ALK cluster members
Among the 107 pre-selected members in the ALK cluster, 72 abnor-
mal genes had Pδ ≥ 5%, accounting for 67% of the members, and 
the other 35 normal genes had Pδ < 5%. The corresponding AUCs, 
FPRs, TPRs, threshold Tg, and population risks of the abnormal and 
the normal genes are listed in Tables 2 and 3, respectively. As shown 
in Table 2, 33 genes were over-expressed for a higher recurrence risk: 
CEP55, TUBB, MDK, NPM1, CEBPZ, TFG, ATIC, LYPD1, LCLAT1, 

LPIN1, MYT1L, WNK3, TNIP2, C12ORF75, TPM4, TTC27, SOS1, 
ADAM17, TSPYL6, KLC1, PPFIBP1, SPECC1, FRS2, SHC1, 
FBN1, THADA, SQSTM1, CLIP1, CBL, CLTC, FBXO36, FUT8 
and ITGAV; while 39 were under-expressed for a higher recurrence 
risk: ATP13A4, LMO7, WDR37, EPAS1, GCC2, CRIM1, PLEKHH2, 
TRIM66, FBXO11, SMPD1, YAP1, MPRIP, TANC1, SEC31A, 
PRKAR1A, CYBRD1, SPTBN1, ALKAL2, WDPCP, SLMAP, CLIP4, 
SLC16A7, SWAP70, LIMD1, BIRC6, SOCS5, PLEKHA7, EIF2AK3, 
PPM1B, KIF5B, PHACTR1, CAMKMT, RBM20, SRD5A2, NYAP2, 
PTN, PICALM, VKORC1L1 and HIP1. Note that for the under-ex-
pressed genes, an inverted expression vector, namely 0-expression, 
should be used as a predictor to plot the ROC correctly.

For demonstration purposes, the ROC curves of the top 12 genes 
in decreasing order of Pδ are shown in Figure 1. The highest one in 
the first row of Table 2 is CEP55. Here, for the chosen cutoff Tg = 
−0.0076, a patient with a CEP55 expression ≥ (−0.0076) has a re-
currence risk of Pabove = 49.03%, while a patient with a CEP55 ex-
pression < (−0.0076) has a recurrence risk of Pbelow = 18.39%, and 
hence the difference between the two is Pδ = 30.64%. CEP55 is 
considered over-expressed because Pabove > Pbelow. CEP55, called 
centrosomal protein 55, is related to DNA damage and cytoskeletal 
signaling and plays a role in mitotic exit and cytokinesis. CEP55 

Fig. 1. Univariate ROCs of the top 12 genes in the ALK cluster in the decreasing order of Pδ. Inverted expression value (0 − Expression) was used to plot the 
ROC for the downregulated genes, similarly hereinafter. ALK, anaplastic lymphoma kinase; AUC, area under the curve; ROC, receiver operating characteristic.
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Table 2.  AUCs and recurrence risks of 72 abnormal ALK genes with Pδ ≥ 5%

GENE AUC FPR TPR Tg Pabove (%) Pbelow (%) Pδ (%) Status

CEP55 0.68 0.42 0.76 −0.0076 49.03 18.39 30.64 up

ATP13A4 0.66 0.43 0.7 −0.0197 24.19 46.15 21.96 down

TUBB 0.64 0.39 0.62 0.0253 46.02 25 21.02 up

MDK 0.64 0.42 0.64 0.0403 44.77 25.1 19.67 up

LMO7 0.6 0.39 0.58 0.0509 22.99 42.37 19.38 down

NPM1 0.61 0.46 0.68 −0.0053 43.63 24.66 18.97 up

WDR37 0.63 0.43 0.63 0.0118 24.54 43.23 18.69 down

EPAS1 0.67 0.31 0.58 0.0882 23.12 41.42 18.3 down

GCC2 0.62 0.32 0.57 0.0458 24.87 41.52 16.65 down

CRIM1 0.63 0.39 0.62 0.0303 25.25 41.79 16.54 down

PLEKHH2 0.62 0.37 0.57 0.079 24.73 41 16.27 down

CEBPZ 0.59 0.39 0.57 0.0299 43.58 27.65 15.93 up

TFG 0.58 0.35 0.51 0.0718 43.88 28.67 15.21 up

ATIC 0.61 0.41 0.58 0.0254 42.92 27.73 15.19 up

TRIM66 0.59 0.41 0.58 0.005 27.04 42.17 15.13 down

LYPD1 0.6 0.45 0.61 0.011 42.15 27.5 14.65 up

FBXO11 0.62 0.34 0.56 0.041 25.57 40.2 14.63 down

LCLAT1 0.59 0.5 0.66 −0.013 41.2 26.98 14.22 up

SMPD1 0.57 0.39 0.54 0.0281 26.87 40.57 13.7 down

LPIN1 0.56 0.36 0.5 0.053 42.86 29.37 13.49 up

MYT1L 0.57 0.47 0.62 −0.0011 41.27 27.83 13.44 up

YAP1 0.59 0.37 0.55 0.0335 27.52 40.91 13.39 down

MPRIP 0.59 0.46 0.63 0.0038 27.65 40.75 13.1 down

WNK3 0.54 0.35 0.48 0.0757 42.55 29.93 12.62 up

TANC1 0.62 0.32 0.57 0.0631 26.74 39.35 12.61 down

SEC31A 0.6 0.42 0.57 −0.0025 29.17 41.74 12.57 down

PRKAR1A 0.59 0.44 0.6 0.0074 27.98 40.53 12.55 down

TNIP2 0.56 0.46 0.6 7.00E-04 40.98 28.57 12.41 up

C12ORF75 0.58 0.48 0.62 −0.027 40.62 28.32 12.3 up

TPM4 0.56 0.5 0.63 −0.0131 40.46 28.18 12.28 up

TTC27 0.57 0.41 0.54 0.022 41.55 29.28 12.27 up

CYBRD1 0.59 0.48 0.61 0 28.51 40.55 12.04 down

SPTBN1 0.57 0.42 0.55 0.0219 28.14 39.58 11.44 down

ALKAL2 0.6 0.35 0.52 0.1104 28.04 39.25 11.21 down

SOS1 0.55 0.46 0.58 0.0069 40.42 29.34 11.08 up

ADAM17 0.57 0.46 0.58 −0.004 40.08 29.58 10.5 up

TSPYL6 0.56 0.48 0.6 −0.0022 39.84 29.44 10.4 up

KLC1 0.52 0.32 0.42 0.0302 41.52 31.19 10.33 up

PPFIBP1 0.55 0.46 0.57 −0.0145 39.92 29.92 10 up

SPECC1 0.57 0.47 0.58 −0.0119 39.75 29.83 9.92 up

(continued)
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was found to be a fusion partner of ALK and a high CEP55 expres-
sion was reported to be associated with a poor prognosis.14,15 The 
second gene we consider is ATP13A4, which was under-expressed 
with Pabove = 24.19%, Pbelow = 46.15%, for a difference of Pδ = 
21.96%. ATP13A4, called ATPase 13A4, may enable ATPase-cou-
pled cation transmembrane transporter activity and may be involved 
in cellular calcium ion homeostasis. In one lung cancer case study,16 
a 53-year-old metastatic Stage IV patient harboring ATP13A4-ALK 
and two other ALK-fusions COX7A2L-ALK and LINC01210-ALK 
underwent first-line crizotinib therapy, which showed 12 months 
of Progress Free Survival/Partial Remission (PFS/PR), then a new 

SLCO2A1-ALK fusion led to resistance. Afterward, second-line ceri-
tinib therapy was applied and resulted in a further 8 months of PFS, 
and the NGS results demonstrated the loss of ATP13A4-ALK and 
SLCO2A1-ALK. Interestingly, the ALK expression itself was normal 
and only showed a difference of Pδ = 2.02%.

Note that the results for the remaining 10 gene clusters in this 
study are presented in the Supplementary File 1.

Cluster member voting models
Next, for the training sample, we calculated the percentage of ab-
normal members for each cluster. Again, we plotted the ROC but 

GENE AUC FPR TPR Tg Pabove (%) Pbelow (%) Pδ (%) Status

WDPCP 0.56 0.44 0.55 0.0163 29.49 39.25 9.76 down

SLMAP 0.58 0.39 0.53 0.0339 29.02 38.75 9.73 down

CLIP4 0.58 0.34 0.5 0.0655 28.96 38.46 9.5 down

SLC16A7 0.58 0.44 0.54 0.0041 30.24 39.74 9.5 down

SWAP70 0.56 0.48 0.59 0.0024 29.73 39.23 9.5 down

LIMD1 0.57 0.49 0.58 0.0054 29.82 39.02 9.2 down

FRS2 0.52 0.44 0.54 0.0062 39.47 30.71 8.76 up

BIRC6 0.55 0.38 0.52 0.0159 30.26 38.98 8.72 down

SHC1 0.52 0.34 0.43 0.0616 40.22 31.68 8.54 up

FBN1 0.53 0.46 0.55 −0.0041 39.15 30.77 8.38 up

SOCS5 0.56 0.36 0.47 0.0388 29.73 38.05 8.32 down

PLEKHA7 0.56 0.53 0.64 −0.0759 31.77 39.89 8.12 down

EIF2AK3 0.53 0.45 0.54 0 31.08 38.96 7.88 down

THADA 0.53 0.44 0.52 0.0089 38.94 31.25 7.69 up

SQSTM1 0.51 0.45 0.53 0.0163 38.7 31.35 7.35 up

PPM1B 0.54 0.42 0.54 0.0205 30.88 38.11 7.23 down

KIF5B 0.53 0.44 0.55 0.0113 31.05 38.02 6.97 down

PHACTR1 0.57 0.41 0.52 0.0754 30.69 37.54 6.85 down

CLIP1 0.51 0.4 0.46 0.0297 38.89 32.04 6.85 up

CAMKMT 0.54 0.43 0.53 0.0096 31.25 37.98 6.73 down

RBM20 0.52 0.47 0.56 0.0093 31.31 37.69 6.38 down

CBL 0.54 0.39 0.45 0.019 38.58 32.28 6.3 up

SRD5A2 0.56 0.52 0.64 −0.0121 32.09 38.32 6.23 down

NYAP2 0.54 0.54 0.67 −0.0186 32.26 38.42 6.16 down

CLTC 0.51 0.39 0.45 0.0321 38.38 32.39 5.99 up

FBXO36 0.52 0.51 0.58 −0.0086 37.6 31.7 5.9 up

PTN 0.54 0.44 0.56 0.0341 31.63 37.45 5.82 down

PICALM 0.55 0.39 0.46 0.0318 31.35 37.04 5.69 down

FUT8 0.53 0.47 0.53 0.0417 37.55 32.24 5.31 up

VKORC1L1 0.53 0.47 0.54 0.0027 32.23 37.5 5.27 down

HIP1 0.54 0.44 0.54 0.0348 31.86 37.05 5.19 down

ITGAV 0.51 0.51 0.57 9.00E-04 37.25 32.16 5.09 up

ALK, anaplastic lymphoma kinase; AUC, area under the curve; FPR, false positive rate; TPR, true positive rate.

Table 2.  (continued)
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with an abnormal percentage as a new recurrence predictor. The 
ROC curves are presented in Figure 2. For each ROC curve, the 
horizontal and vertical dashed lines mark the point on the curve 
that is the closest to the top-left corner (0, 1), and the correspond-
ing FPR and TPR are shown near each dashed line. The AUC is 
also shown. Taking ALK as an example, the closest point to the 

top-left corner is (0.32, 0.73), indicating that the specificity (1-
FPR) was 68% and the sensitivity (TPR) was 73%, and the AUC 
was 0.763. The corresponding cutoff was set as the voting thresh-
old for the ALK cluster. Table 4 lists the corresponding AUCs, 
FPRs, TPRs, threshold Tp, Pabove, and Pbelow. In summary, across 
the 11 studied clusters, the recurrence risk of the abnormal group 

Table 3.  AUCs and recurrence risks of 35 normal ALK genes with Pδ < 5%

GENE AUC FPR TPR Tg Pabove (%) Pbelow (%) Pδ (%) Status

TOGARAM2 0.56 0.51 0.62 −0.0095 32.37 37.34 4.97 normal

BCL11A 0.52 0.4 0.51 0.0391 32.37 37.34 4.97 normal

ATAD2B 0.51 0.36 0.41 0.0621 37.91 33 4.91 normal

MSN 0.55 0.39 0.51 0.0511 31.74 36.51 4.77 normal

PRKCB 0.55 0.38 0.49 0.0701 31.98 36.45 4.47 normal

AKAP8L 0.51 0.49 0.56 −0.0046 32.8 37.07 4.27 normal

CUX1 0.54 0.4 0.49 0.0396 32.28 36.52 4.24 normal

NCOA1 0.52 0.42 0.51 0.0344 32.26 36.49 4.23 normal

PLEKHM2 0.5 0.48 0.52 −0.0047 36.97 32.79 4.18 normal

SORCS1 0.51 0.54 0.59 −0.0075 33.08 36.99 3.91 normal

SMPDL3B 0.53 0.5 0.6 −0.0554 33.33 37.17 3.84 normal

CMTR1 0.51 0.47 0.51 0.0067 32.89 36.58 3.69 normal

MAPK1 0.52 0.49 0.52 −0.005 36.67 33.06 3.61 normal

TCF12 0.54 0.45 0.49 0.0036 36.77 33.2 3.57 normal

SMPDL3A 0.52 0.51 0.54 −0.0275 36.43 32.86 3.57 normal

MTA3 0.5 0.46 0.5 0.0021 36.68 33.2 3.48 normal

SMPD2 0.51 0.38 0.39 0.0535 36.63 33.87 2.76 normal

MAPK3 0.54 0.42 0.48 0.0142 33.33 36 2.67 normal

DCTN1 0.5 0.43 0.46 0.0209 36.32 33.7 2.62 normal

DCHS1 0.53 0.41 0.49 0.0531 36.47 33.97 2.5 normal

SMPD3 0.52 0.46 0.48 0.0141 36.16 33.72 2.44 normal

SRBD1 0.52 0.49 0.53 0.0003 33.75 35.95 2.2 normal

TPR 0.51 0.46 0.52 0.0063 33.76 35.89 2.13 normal

ALK 0.52 0.54 0.61 −0.0176 35.71 33.66 2.05 normal

TACR1 0.52 0.55 0.6 −0.0096 33.96 35.98 2.02 normal

VIT 0.53 0.42 0.52 0.015 33.67 35.66 1.99 normal

DYSF 0.51 0.51 0.53 −0.0257 35.74 33.91 1.83 normal

IRS1 0.52 0.48 0.52 0.0129 33.91 35.71 1.8 normal

EML4 0.51 0.41 0.45 0.0211 33.93 35.66 1.73 normal

CDK15 0.52 0.45 0.51 0.0047 33.94 35.61 1.67 normal

ERC1 0.51 0.41 0.43 0.0162 35.82 34.16 1.66 normal

EML6 0.51 0.54 0.6 −0.0678 34.43 35.59 1.16 normal

STRN 0.51 0.49 0.48 0.0012 34.32 35.37 1.05 normal

RANBP2 0.54 0.31 0.44 0.051 34.25 35.22 0.97 normal

C9ORF3 0.51 0.43 0.48 0.0195 35.35 34.46 0.89 normal

ALK, anaplastic lymphoma kinase; AUC, area under the curve; FPR, false positive rate; TPR, true positive rate.
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Fig. 2. Univariate ROCs of 11 clusters. The percentage of the abnormal members in each cluster was used as a recurrence predictor. For each ROC curve, the 
horizontal and vertical dashed lines mark the point on the curve that is the closest to the top-left corner (0, 1), and the corresponding FPR and TPR are shown 
near each dashed line. The AUC is also shown. Taking ALK as an example, the closest point to the top-left corner is (0.32, 0.73), indicating that the specificity 
(1-FPR) is 68% and sensitivity (TPR) is 73%, and the AUC is 0.763. The corresponding cutoff is set as the voting threshold for the ALK cluster. ALK, anaplastic 
lymphoma kinase; AUC, area under the curve; FPR, false positive rate; ROC, receiver operating characteristic; TPR, true positive rate.

Table 4.  AUC, TPR, FPR, threshold Tp and recurrence risks for 11 clusters

SEED AUC Tp (%) Pabove (%) Pbelow (%) Pδ (%) FPR TPR ACC PPV
ALK 0.763 55.56 55.41 17.31 38.1 0.32 0.73 0.7 0.55
BRAF 0.681 57.89 48.62 23.48 25.14 0.36 0.63 0.64 0.49
EGFR 0.671 58.33 46.58 25.1 21.48 0.37 0.61 0.62 0.47
MET 0.656 57.14 43.75 24.78 18.97 0.46 0.67 0.59 0.44
NTRK 0.715 51.35 52.19 19.29 32.9 0.35 0.71 0.67 0.52
RAS 0.685 60 50.52 24.31 26.21 0.31 0.58 0.66 0.51
RET 0.734 55.32 50.21 19.25 30.96 0.39 0.73 0.65 0.5
ROS1 0.682 52.38 48.44 22.96 25.48 0.37 0.65 0.64 0.48
TP53 0.682 55.56 50.49 23.19 27.3 0.32 0.62 0.66 0.5
CTLA4 0.68 60 48.96 25.52 23.44 0.31 0.56 0.64 0.49
PDCD1 0.656 62.5 47.98 27.51 20.47 0.29 0.49 0.64 0.48

Pabove is the recurrence risk of the patients with the corresponding abnormal cluster members ≥ Tp%, and Pbelow is the opposite group with < Tp%. ACC, accuracy; AUC, area under 
the curve; FPR, false positive rate; PPV, positive prediction value; TPR, true positive rate.
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(of all pathological stages) ranged from 174% (PDCD1) to 320% 
(ALK) of the corresponding normal group.

Recurrence and survival analysis
In the above, lung cancers were labeled as normal (GCEI = 0) or 
abnormal (GCEI = 1) using a given cluster GCEI or a combina-
tion of atomic GCEIs. Next, the recurrence risks were assessed for 
the subpopulations defined by individual GCEI status and combi-
nations of GCEIs. For a given atomic or combinatory GCEI, the 
recurrence risk, defined as the percentage of recurred patients, was 
calculated based on the GCEI status of patients at different patho-
logical stages, such as Stage I, Stages II–V, and all stages. Table 
5 lists the recurrence risks for the subpopulations labeled by the 
atomic GCEI indicators and DGCntGT5 indicator. It can be seen 
that the ALK cluster gave the largest risk ratio for the lung cancer 
group with GCEI = 1 over GCEI = 0 for the 3 stage groups, with 

320%, 332%, 188% for all stages, Stage I, and Stages II–IV, re-
spectively. As for the minimal ratio, PDCD1 gave 174% for all 
stages, MET 169% for Stage I, and EGFR 109% for Stages II–IV. 
On average, the risk ratios of the group with GCEI = 1 over GCEI 
= 0 were 222%, 247%, 134% for all stages, Stage I, Stages II–IV, 
respectively, indicating that on average the recurrence risk of pa-
tients with an abnormally expressed cluster was more than double 
that of the normal counterpart for all stages or Stage I, while even 
for the late Stages II–IV, the risk was still increased by 34%. This 
demonstrates the power of recurrence risk stratification with the 
GCEI.

In addition, the recurrence risks of the 10 subgroups of cGCEI 
= 0, 1, 2, …, 9, as defined by counting the number of 1’s in the 
binary string of the ordered list (ALK, BRAF, EGFR, MET, NTRK, 
RAS, RET, ROS1, TP53), are listed in Table 6. It can be seen that 
the risk increased along with the cGCEI values, indicating that the 

Table 6.  Number of none-recurred and recurred cases and the recurrence risks of cGCEI derived from 9-digit string signatures (only evaluated for all 
stages)

cGCEI Exemplary signatures None-recurred Recurred Total Recurrence (%)

0 000000000 53 4 57 7.02

1 100000000,000000001 61 11 72 15.28

2 110000000,000000011 39 10 49 20.41

3 111000000,000000111 33 7 40 17.5

4 111100000,000001111 30 12 42 28.57

5 111110000,000011111 21 11 32 34.38

6 111111000,000111111 24 31 55 56.36

7 111111100,001111111 24 26 50 52

8 111111110,011111111 20 32 52 61.54

9 111111111 9 24 33 72.73

cGCEI, combinatory gene cluster expression index.

Table 5.  Recurrence percentages of lung cancers in different stage groups flagged by the GCEI

Subpopulation
All (Stages I–IV) Stage I Stages II–IV

GCEI = 0 (%) GCEI = 1 (%) GCEI = 0 (%) GCEI = 1 (%) GCEI = 0 (%) GCEI = 1 (%)

ALK 17.31 55.41 12.56 41.75 35.85 67.23

BRAF 23.48 48.62 15.38 36.27 53.57 59.48

EGFR 25.1 46.58 16.67 33.02 54.24 59.29

MET 24.78 43.75 17.14 28.89 50.98 60.33

NTRK 19.29 52.19 12.87 39.81 44.23 63.33

RAS 24.31 50.52 16.36 35.42 47.3 65.31

RET 19.25 50.21 14.14 35.29 39.58 64.52

ROS1 22.96 48.44 16.92 32.11 44.64 63.79

TP53 23.19 50.49 14.56 37.5 48.57 63.73

CTLA4 25.52 48.96 13.79 38.32 52.87 62.35

PDCD1 27.51 47.98 16.13 36.56 54.35 61.25

DGCntGT5 18.84 59.47 13.3 49.35 40.68 66.37

Average 22.63 50.22 14.98 37.02 47.24 63.08

Group risk of GCEI = 1 is typically 120% to 300% that of the corresponding group of GCEI = 0. GCEI, gene cluster expression index.
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more abnormal clusters there were, the higher the risk. For cGCEI 
= 0, where all the clusters were normally expressed, the recurrence 
risk was merely 7.02%; whereas, when there was one and only one 
abnormal cluster (cGCEI = 1), the risk was more than doubled to 
15.28%; and it then increased to 20.41% for cGCEI = 2. However, 
a hiccup then occurred in the trend, whereby the risk went down to 
17.50% for cGCEI = 3, which might be due to the data size. The 
risk then again kept increasing along with the cGCEI, albeit also 
with a hiccup. After cGCEI 6, the risk was beyond 56.36% until 
it hits an astonishing 72.73% for the group of patients with cG-
CEI = 9, where all 9 clusters showed abnormal expressions. This 
also shows the rationale of why we defined a new combined GCEI 
based on DGCntGT5 to collapse the 10 subtypes into only two.

Moreover, population survival analysis was applied to the sub-
groups of GCEI = 0 or 1 for Stage I, Stages II–IV, and all stages. 
Figure 3 shows the percentage of death of each subgroup within 
the different stages or all stages. In summary, for Stage I, the 
median increase was 6.74% with a maximum of 11.14% (TP53, 
Stage I); for Stages II–IV, the median increase was 9.60% with 
a maximum of 16.18% (RAS, Stages II–IV); for all stages, the 
median increase was 9.85% with a maximum of 14.46% (DCGC-
ntGT5, all stages). However, an exception was noted for MET 
(Stage I, blue), where the percentages of death for GCEI = 0, 1 
were 26.75% and 25.28%, respectively, and both subgroups had 
similar death risks. In conclusion, the survival population results 
indicated a modest survival risk difference based on GCEI status 
as defined by recurrence. The same procedure could be applied 
here by targeting the OS. Since the OS and RS are correlated but 

not the same, optimizing one of them may only guarantee a sub-
optimal risk profile for the other.

Validation
There were 703 patients in the validation set combined from the 
GSE37745, GSE41271, GSE50081, and GSE74777 data sets, with-
in which there were 272 recurrences (39%) (vs. 35% in the training 
set), the average patient age was 66 years old (vs. 61 in the train-
ing set), and there were 278 females (40%) (vs. 31% in the training 
set), and 397 Stage I patients (49%) (vs. 64% in the training set). 
Table 7 shows the recurrence risks of GCEI = 0 vs. GCEI = 1, where 
the GCEI was determined based on the thresholds in the training 
phase. The average risk increase was 11.12%, and the maximum 
was 35.5% (RAS). This is a modest validation result compared with 
the training risk profiles (Table 5). Note that CTLA4 showed a risk 
reversal while ALK and NTRK showed barely different risks be-
tween the two groups. These modest results might mainly be due to 
several reasons; first, the data were from different microarray chips: 
both gene expression omnibus sets in the training set came from 
Affymetrix Human Genome U133 Plus 2.0 Array, while in the vali-
dation set, although GSE37745 and GSE50081 were from the same 
chip, GSE41271 came out of RnaSeq of the Illumina HumanWG-6 
v3.0 expression beadchip and GSE74777 was from the Affymetrix 
Human Transcriptome (HT) Array 2.0; second, the different patient 
profiles as stated in the above.

Comparison with conventional methods
Up to now, we have demonstrated that classification using the 

Fig. 3. Percentage of deaths of the lung cancer subgroups (GCEI = 0, 1) within different stages or all stages. For each gene cluster expression index or com-
binatory DCGCntGT5, 3 vertical pairs are plotted with different colors (All stages: black, Stage I: blue, Stages II–IV: red). Each pair consists of GCEI = 0 (circle) 
and GCEI = 1 (*). The vertical gap from the circle to * shows the increased percentage of GCEI = 1 compared to GCEI = 0. In summary, for Stage I, the median 
increase is 6.74% with a maximum of 11.14% (TP53, blue); for Stages II–IV, the median increase is 9.60% with a maximum of 16.18% (RAS, red); for all stages, 
the median increase is 9.85% with a maximum of 14.46% (DCGCntGT5, black). GCEI, gene cluster expression index.
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GCEI could stratify lung cancers into groups with dramatically 
different recurrence risk profiles. Next, we compared the GCEI 
with other conventional characteristics, namely stage, node (N), 
and T of TNM, and prognosis of recurrence and survival via cor-
relation analysis. The average correlation coefficients of GCEIs 
across these five clinical variables were: DGCntGT5 (0.39), ALK 
(0.36), NTRK (0.34), BRAF (0.32), RAS (0.32), RET (0.31), EGFR 
(0.27), ROS1 (0.27), MET (0.23), TP53 (0.22), PDCD1 (0.12), 
CTLA4 (0.09).

On the other hand, the average correlation coefficients of the 
clinical variables across 12 GCEIs were: recurrence (0.25), surviv-
al (0.23), stage (0.30), N (0.28), T (0.30), indicating that the GCEIs 
were modestly correlated with clinically important pathological 
variables and prognosis. The advantages of the GCEI include that 
the method involves molecular profiling and has the potential to 
guide targeted therapy and immunotherapy for lung cancers.

Discussion
The goal of this research was not to predict recurrence risk but 
to provide a novel approach to classify lung cancers based on 
gene cluster expression profiles. The original intention was to 
complement the current personalized approach with DNA-based 
classifications. Recurrence risk was used as a convenient guiding 
prognostic objective here to derive GCEIs, but this method can be 
applied to other objectives too, such as prognosis of survival, treat-
ment response, and to clinically important pathological variables, 
such as stage, metastatic node count, or distance metastasis. As 
far as personalized medicine in lung cancer is concerned, although 
DNA-based tests have been successfully used for targeted therapy 
and immunotherapy, the proportion of patients whose tumors can 
be targeted therapeutically is limited and is usually less than 30%. 
A retrospective study of 2257 metastatic NSCLC patients showed 
that more than half of the tested patients did not have their results 
before first-line treatment and fewer than 20% of tested patients 
had their results for all 4 driver mutations (ALK, EGFR, ROS1, 
BRAF), and PD-L1 before first-line treatment. Moreover, although 

the turnaround time improved from the year 2017 to 2019, not all 
patients who tested positive for driver mutations received targeted 
therapy in the first-line setting.17 Therefore it shows there is an 
unmet need for a large proportion of lung cancer patients who are 
not qualified for personalized medicines following the current 
paradigm. We can imagine that an RNA expression network (a 
cluster) centered around an important gene is disturbed not just 
by a particular DNA mutation, which might be just one thread in 
the whole picture, but by a lot of other factors. The abnormality 
of an RNA expression network is then gauged by the percentage 
of abnormally expressed nodes (cluster members). It is only af-
ter the percentage of abnormal nodes goes beyond a threshold is 
the collapse of the whole network triggered. GCEI was introduced 
here to label whether an RNA expression network looks normal or 
abnormal concerning the guiding objective, such as recurrence in 
the current study. When an expression network centered around 
an important gene for which there are available drug targets looks 
abnormal, the same drugs might come to the rescue and adjust the 
network to look more normal. Hence we propose that the patient 
group of abnormal status with GCEI = 1 who cannot access the 
same targeted therapy and immunotherapy might benefit from the 
same treatment. Evidence has already emerged in a study called 
the WINTHER trial (NCT01856296),18 which was the first clini-
cal trial to navigate lung, colon, head and neck, and other cancer 
patients with previous treatments to therapy on the basis of fresh 
biopsy-derived DNA sequencing or RNA expression (tumor ver-
sus normal). This study showed that transcriptome profiling is as 
useful as DNA tests for improving therapy recommendations and 
patient outcomes.

On the other front, novel RNA drugs have emerged and gener-
ated more and more enthusiasm in the pursuit of new lung cancer 
treatment.19 Although the expression of a single targeted gene can 
be relatively easily evaluated, it will be important to know how the 
RNA expression of a gene network centered around the targeted 
gene is disturbed and how the disturbance is related to the clinical 
outcome. Hence it will be a routine requirement to measure whether 
a given RNA expression network is normal or abnormal clinically. 
The GCEI is a simple attempt to address this coming revolution.

Conclusions
Gene cluster expression index can be used to classify lung cancers 
with dramatically different recurrence risks and the recurrence risk 
(percentage) of the patient group with index 1 is typically 20% 
to 200% higher than the group with index 0. We expect that the 
higher risk group of index 1 may also be suitable for the corre-
sponding targeted therapy or immunotherapy. Therefore, it may be 
used to guide targeted therapy or immunotherapy when the con-
ventional companion tests give no recommendation. Nevertheless, 
this should be validated by clinical trials before it is applied in the 
clinical practice.
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Table 7.  Recurrence risks of the normal group (GCEI = 0) vs. abnor-
mal group (GCEI = 1) computed from the validation set using the same 
thresholds from the training phase

Cluster % Recurrence 
(GCEI = 0)

% Recurrence 
(GCEI = 1)

% Increase of  
GCEI = 1 from 0

ALK 37.73 38.81 2.86

BRAF 36.36 41.13 13.12

CTLA4 39.51 35.92 −9.08

EGFR 36.36 40 10.01

MET 36.33 39.83 9.63

NTRK 38.01 38.38 0.97

PDCD1 37.06 40.27 8.66

RAS 34.37 46.57 35.5

RET 35.38 42.74 20.8

ROS1 36.39 40.49 11.27

TP53 35.42 42.07 18.77

DGCntGT5 36.99 41.05 10.98

cGCEI, combinatory gene cluster expression index.
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